Abstract

C-glycosyl flavonoids are important secondary plant metabolites with a wide range of biological activities. Rotational isomerism, arising from restricted bond rotation, has been observed on a portion of C-glycosyl flavonoids. NMR technique contributes most to the observation and research of this phenomenon. Signal duplication in NMR spectra may be the key characteristic of C-glycosyl flavonoids existing as rotamers. Bulky steric hindrance from the substituents at position 7 and sugar moieties are responsible for the restricted bond rotation. There are other influence factors including temperature, solvents, H-bonds and π-stacking, but these are of lesser importance. Difference exists between 8-C-glycosyl flavonoids and their 6-C-glycosyl isomers despite sharing the same flavonoid aglycone and sugar moiety. 8-C-glycosyl flavonoids are more likely to suffer from restricted rotation. The energy barriers between rotamers of C-glycosyl flavonoids seem not high enough for atropisomerism to be realized and the isolation of rotamers should be difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.