Abstract

Previously we developed a Cu(II)-catalyzed, enantioselective aldol reaction between malonic acid half thioesters (MAHTs) and aldehydes based on the biosynthesis of polyketides and fatty acids in which MAHTs are decarboxylated enzymatically to afford ester enolates that condense with thioesters. We report evidence based on steric effects, kinetics, kinetic isotope effects, and crossover experiments in support of a different mechanism for the Cu(II)-catalyzed aldol reaction involving enolization of MAHTs by deprotonation, addition to the aldehyde, decarboxylation, and protonation of the β-hydroxy enolate. We also provide an explanation, based on stereoelectronic effects, for the mechanistic dichotomy between Cu(II)-catalyzed and enzyme-catalyzed reactions of MAHTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.