Abstract
The precise control of Z and E configurations of the carbon-carbon double bond in alkene synthesis has long been a fundamental challenge in synthetic chemistry, even more pronounced when simultaneously striving to achieve enantioselectivity [(Z,R), (Z,S), (E,R), (E,S)]. Moreover, enantiopure non-natural α-amino acids are highly sought after in organic and medicinal chemistry. In this study, we report a ligand-controlled stereodivergent synthesis of non-natural α-quaternary amino acids bearing trisubstituted alkene moieties in high yields with excellent enantioselectivity and Z/E selectivities. This success is achieved through a palladium/copper-cocatalyzed three-component assembly of readily available aryl iodides, allenes, and aldimine esters by simply tuning the chiral ligands of the palladium and copper catalysts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have