Abstract

Marine neuroexcitatory compounds isodomoic acids G and H were efficiently synthesized from a common intermediate using a silicon-based cross-coupling reaction. Dividing each target compound into the core fragment and the side-chain fragment enabled the synthesis to be convergent. The trans-2,3-disubstituted pyrrolidine core fragment was accessed through a diastereoselective rhodium-catalyzed carbonylative silylcarbocyclization reaction of a vinylglycine-derived 1,6-enyne. A stereochemically divergent desilylative iodination reaction was developed to convert the cyclization product to both E- and Z-alkenyl iodides, which would eventually lead to isodomoic acid G and isodomoic acid H, respectively. The late-stage alkenyl-alkenyl silicon-based cross-coupling reaction uniting the core alkenyl iodides and the side-chain alkenylsilanol was achieved under mild conditions. Finally, two mild deprotections afforded the target molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.