Abstract
A sequential rhodium-catalyzed silylcarbocyclization of enynes parlayed with a palladium-catalyzed, silicon-based cross-coupling reaction has been developed for the synthesis of highly substituted cyclopentanes. 1,6-Enynes reacted with benzyldimethylsilane in the presence of rhodium catalysts to afford five-membered rings bearing a (Z)-alkylidenylbenzylsilyl group. A variety of substitution patterns and heteroatom substituents were compatible. The silylcarbocyclization in which an unsaturated ester participated was also achieved. The resulting alkylidenylsilanes underwent palladium-catalyzed cross-coupling using tetra-n-butylammonium fluoride. This cross-coupling reaction displayed a broad substrate scope. A wide variety of substitution patterns, electronic properties, and heteroatoms were compatible. All of the cross-coupling reactions proceeded in high yields under very mild conditions and with complete retention of double bond configuration, resulting in densely functionalized 3-(Z)-benzylidenecyclopentanes and heterocycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.