Abstract
Stereochemistry and biosynthesis of guaiacylglycerol-8-O-4′-(sinapyl alcohol) ether (GGSE), an 8-O-4′ neolignan, which consists of coniferyl and sinapyl alcohol moieties, in Eucommia ulmoides were investigated. Four 8-O-4′ neolignans, GGSE, syringylglycerol-8-O-4′-(coniferyl alcohol) ether (SGCE), guaiacylglycerol-8-O-4′-(coniferyl alcohol) ether (GGCE), and syringylglycerol-8-O-4′-(sinapyl alcohol) ether (SGSE), were synthesized. Their erythro and threo diastereomers were separated through acetonide derivatives, intermediates of the synthesis, and identified by means of nuclear magnetic resonance (NMR) spectroscopy. All of the erythro-acetonide derivatives have larger coupling constants (ca 9 Hz) for the C7-H resonances than those of the threo ones (1.5–2 Hz). In the case of the four 8-O-4′ neolignans, the C7-H coupling constants of the threo-isomers are not smaller than those of the erythro ones. GGSE isolated previously from this plant was identified as the erythro isomer by comparison of the 13C-NMR data with synthetic erythro-GGSE and threo-GGSE and the other 8-O-4′ neolignans mentioned as above. Administration of a mixture of [8-14C]coniferyl alcohol and [8-14C]sinapyl alcohol to excised shoots of E. ulmoides was carried out and the incorporation of 14C into erythro-[14C]GGSE was found to be higher than that in threo-[14C]GGSE. The occurrence of diastereoselective formation of erythro-GGSE by cross coupling of coniferyl and sinapyl alcohols is suggested.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.