Abstract

Inclusion of steel fibers to concrete progresses the flexural and tensile capacities of concrete. Consequently the shear capacity of concrete flexural members improve. Predicting the shear capacity of concrete beams containing steel fiber is an important issue not only in structural design but also to retrofitting of existing structures. Since there are several variables to assess the shear capacity of steel fiber reinforced concrete (SFRC) beams, presenting a suitable equation is a complicated task. The aim of the present paper is to evaluate an empirical formulae based stepwise regression (SR) method for shear capacity of SFRC beams. A series of reliable experimental data has been provided from literatures for model development. The obtained results based SR model were compared with experimental data in training and testing state. A practical formulae based SR method has been developed for shear capacity assessment of SFRC beams. Besides, several equations based models also presented to compare with the equation based SR model. The comparison showed the SR formulae gives the most exact accuracy than others in terms of shear capacity assessment of SFRC beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call