Abstract

As a promising intercalation material for capacitive deionization (CDI), Prussian blue (PB) and its analogues (PBAs) have the superiority of high theoretical capacity and easy synthesis. But they often suffer from low conductivity and severe crystal phase transition, resulting in inferior desalination capacity and poor cycling stability. Herein, the dual strategy of structural optimization and carbon-based materials introduction is proposed to enhance the desalination performance of PBAs. Stepwise hollow structure formed by surface etching has been proved to be more outstanding than cubic structure. Enlarged the specific surface area, the contact area with the electrolyte increases, therefore, more active sites are exposed. Besides, the etching of external surfaces provides more buffer space, improves the tolerance to crystal phase transition, and enhances the cycling stability. The introduction of carbon nanotubes brings high conductivity. Specifically, the desalination test shows that stepwise hollow Prussian blue/carbon nanotubes composite delivers a high desalination capacity of 103.4 mg g−1 with outstanding cycling stability. Moreover, the low energy consumption of 0.23 Wh g−1 is also suitable for practical application. The dual strategy opens a window to design advanced electrode materials for CDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.