Abstract
Rechargeable sodium ion batteries (SIBs) are surfacing as promising candidates for applications in large‐scale energy‐storage systems. Prussian blue (PB) and its analogues (PBAs) have been considered as potential cathodes because of their rigid open framework and low‐cost synthesis. Nevertheless, PBAs suffer from inferior rate capability and poor cycling stability resulting from the low electronic conductivity and deficiencies in the PBAs framework. Herein, to understand the vacancy‐impacted sodium storage and Na‐insertion reaction kinetics, we report on an in‐situ synthesized PB@C composite as a high‐performance SIB cathode. Perfectly shaped, nanosized PB cubes were grown directly on carbon chains, assuring fast charge transfer and Na‐ion diffusion. The existence of [Fe(CN)6] vacancies in the PB crystal is found to greatly degrade the electrochemical activity of the FeLS(C) redox couple via first‐principles computation. Superior reaction kinetics are demonstrated for the redox reactions of the FeHS(N) couple, which rely on the partial insertion of Na ions to enhance the electron conduction. The synergistic effects of the structure and morphology results in the PB@C composite achieving an unprecedented rate capability and outstanding cycling stability (77.5 mAh g−1 at 90 C, 90 mAh g−1 after 2000 cycles at 20 C with 90% capacity retention).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.