Abstract

The developmental toxicity of silver nanoparticles (AgNPs) was investigated following exposure of Oryzias latipes (medaka) embryos to 0.1−1 mg/L of homogeneously dispersed AgNPs for 14 days. During this period, developmental endpoints, including lethality, heart rate, and hatching rate, were evaluated by microscopy for different stages of medaka embryonic development. To compare toxic sensitivity, acute adult toxicity was assessed. There was no difference in acute lethal toxicity between embryo and adult medaka. Interestingly, we found that the increase in stepwise toxicity was dependent on the developmental stage of the embryo. Lethal embryonic toxicity increased from exposure days 1 to 3 and exposure days 5 to 8, whereas there was no change from exposure days 3 to 5. In addition, 7 d exposure to 0.8 mg/L AgNPs resulted in significant heart beat retardation in medaka embryos. AgNPs also caused a dose-dependent decrease in the hatching rate and body length of larvae. These results indicate that AgNP exposure causes severe developmental toxicity to medaka embryos and that toxicity levels are enhanced at certain developmental stages, which should be taken into consideration in assessments of metallic NPs toxicity to embryos.

Highlights

  • Manufactured nanoparticles (NPs) are particles of 100 nm diameter or less

  • It is estimated that nanotechnology will represent $1.5 trillion worth of the global market by 2015 [7]. While such technology provides numerous benefits, its potential toxic effects on the physiology of humans and animals have led to mounting concerns regarding potential environmental and human health risks associated with exposure to nanomaterials

  • To obtain the UV-Vis spectrum of AgNPs, the original colloid was diluted in deionized water (DW) or culture water at 10 mg/L, and scanned from 200 to 600 nm using a spectrophotometer (Ultrospec 2000; Pharmacia Biotech Ltd., UK)

Read more

Summary

Introduction

Manufactured nanoparticles (NPs) are particles of 100 nm diameter or less. The applications of NPs have extended in recent years to areas such as medicine, pharmacology, electronic engineering, magnetic fields and semiconductors, biotechnology, materials and process development, energy, and environmental remediation [1,2,3,4,5,6]. It is estimated that nanotechnology will represent $1.5 trillion worth of the global market by 2015 [7] While such technology provides numerous benefits, its potential toxic effects on the physiology of humans and animals have led to mounting concerns regarding potential environmental and human health risks associated with exposure to nanomaterials. Only a few studies have focused on embryonic toxicity [7, 11, 20] or differences in sensitivity to AgNP between embryos and adult fish. We investigated the lethal and embryonic toxicity of AgNP dispersion (hydrodynamic size: 36.8–55.3 nm) in embryo and adult medaka (Oryzias latipes). This fish species has been used as a model. BioMed Research International organism in a wide variety of research fields, in embryonic development, because individuals are transparent and observed under a microscope

Material and Methods
Results and Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call