Abstract

Azaspiracid-1 (AZA-1) is a newly identified phycotoxin that accumulates in commercially important bivalve molluscs harvested in several European countries and causes severe human intoxications. Molluscan shellfish are known vectors for accumulation and subsequent transfer of phycotoxins such as brevetoxin and domoic acid through various trophic levels within food webs. Finfish can also accumulate phycotoxins, both directly from toxic algae or from consumption of contaminated shellfish and smaller intoxicated fish. To evaluate the teratogenic potential of AZA-1 and its relevancy to toxin accumulation in finfish, we have utilized a microinjection technique to mimic the maternal-egg toxin transfer of an AZA-1 reference standard and a shellfish extract containing azaspiracids in an embryonic Japanese medaka ( Oryzias latipes) fish model. Microinjection of purified AZA-1 caused dose-dependent effects on heart rate, developmental rate, hatching success, and viability in medaka embryos. Within 4 days of exposure to doses ≥40 pg AZA-1/egg, substantial retardation in development was observed as reduced somatic growth and yolk absorption, and delayed onset of blood circulation and pigmentation. Embryos treated to ≥40 pg AZA-1/egg had slower heart rates (bradycardia) for the 9 days in ovo period, followed by reduced hatching success. Microinjection of a contaminated mussel ( Mytilus edulis) extract containing AZAs (AZA-1, -2, and -3), okadaic acid, and dinophysistoxin-2 resulted in similar responses from the fish embryos at equivalent doses. These studies demonstrate that AZA-1 is a potent teratogen to finfish. This work will complement future investigations on AZA-1 accumulation in marine food webs and provide a basis for understanding its toxicity at different trophic levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.