Abstract

Modifications of graphene's electronic band structure can be achieved through periodic bending strain and related potential in samples grown on stepped substrates, opening a viable route to implement the periodicity effects in this ultimate two-dimensional (2D) material. We studied graphene grown on stepped Ir(332), which can be benchmarked to a well-known graphene on flat Ir(111) recognized for a weak van der Waals (vdW) interaction. The structural characterization indicated that graphene growth induces reversible, well defined faceting of iridium surface into alternating terraces and step bunches, while spectroscopy techniques revealed substantial changes of graphene's electronic structure. Crucially, highly concentrated Ir step edges, resulting in locally strong chemical bonding of graphene, introduce a dominant energy parameter which overwhelms the induced strain and presents a driving force for the surface faceting. This sets a general framework for the understanding of graphene mediated faceting of stepped substrates whenever the corresponding low index surface exhibits dominantly vdW interaction with graphene, which can be also supplemented to other 2D materials. Interestingly, the graphene π band becomes pronouncedly anisotropic due to the presence of a periodic potential originating from steps, and lateral variation of the charge carrier concentration enabling a straightforward electronic band engineering in graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.