Abstract
Microfluidic technology for generating monodisperse droplets has significantly advanced various scientific and industrial applications. However, reliance on complex infrastructure, such as external pumps and intricate connections, limits its widespread adoption. In this study, we focused on passive droplet formation through step emulsification (SE) using a connection-free polydimethylsiloxane (PDMS) microchip. Our microchip design enabled droplet formation without the need for external pumps for active flow control, instead utilizing the pressure differential created between inlet reservoirs and a shared sealed-outlet space when degassed PDMS was exposed to atmospheric pressure. We began with a simple design and through progressive refinement of the microchip geometry, we achieved a more advanced design that facilitated detailed analysis of droplet formation dynamics. This design allowed for real-time observation of the droplet formation process, including time-dependent variations in droplet formation rate and the associated gentle changes in droplet size, which were intrinsic characteristics of connection-free PDMS microchips. Experiments demonstrated that a triangular nozzle design significantly improved droplet size uniformity, with a coefficient of variation in droplet diameter below 2 % under optimal conditions. These results highlighted the potential of connection-free SE microchips for generating highly uniform droplets in a simplified and efficient manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.