Abstract

An alternative to 5-hydroxymethyl-2-furfural (HMF), which is a promising furan derivative that can be used as a starting material for the preparation of non-petroleum-derived polymeric materials from sugars, is 5-acetoxymethyl-2-furfural (AMF). The less-hydrophilic acetyl group of AMF has advantages over the hydroxy group of HMF in terms of thermal stability and isolation. In previous studies, fructose has been used as a starting material along with lipases for the enzymatic synthesis of AMF. In this study, we designed a hybrid synthesis system that includes the isomerization and esterification of glucose into AMF. For the step-by-step conversion of glucose to 1,6-diacetylfructose (DAF), glucose-isomerase and immobilized lipase (Novozym 435) were used as enzymes. Furthermore, for the synthesis of AMF, the direct dehydration of DAF was performed using a cation exchange resin (Amberlyst 15), combined with several industrial solvents, such as dimethylsulfoxide (DMSO), acetonitrile (AN) and dimethylformamide (DMF) for the synthesis of AMF. In order to improve the final yield of AMF, we determined the best solvent conditions. While the AMF yield after the direct dehydration of DAF in a single solvent was maximum 24%, an AMF and HMF yield in the mixed solvent such as dioxane and DMS (9:1) was achieved each 65% and 15%. According to these results, we found that the addition of dioxane in aprotic polar solvents could affect the dehydration reaction and dramatically improve the formation of AMF and HMF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call