Abstract

The expression of the replication-dependent histone mRNAs is tightly regulated during the cell cycle. As cells progress from G(1) to S phase, histone mRNA levels increase 35-fold, and they decrease again during G(2) phase. Replication-dependent histone mRNAs are the only metazoan mRNAs that lack polyadenylated tails, ending instead in a conserved stem-loop. Much of the cell cycle regulation is posttranscriptional and is mediated by the 3' stem-loop. A 31-kDa stem-loop binding protein (SLBP) binds the 3' end of histone mRNA. The SLBP is necessary for pre-mRNA processing and accompanies the histone mRNA to the cytoplasm, where it is a component of the histone messenger RNP. We used synchronous CHO cells selected by mitotic shakeoff and HeLa cells synchronized at the G(1)/S or the M/G(1) boundary to study the regulation of SLBP during the cell cycle. In each system the amount of SLBP is regulated during the cell cycle, increasing 10- to 20-fold in the late G(1) and then decreasing in the S/G(2) border. SLBP mRNA levels are constant during the cell cycle. SLBP is regulated at the level of translation as cells progress from G(1) to S phase, and the protein is rapidly degraded as they progress into G(2). Regulation of SLBP may account for the posttranscriptional component of the cell cycle regulation of histone mRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.