Abstract

The stem-loop structure at the 3' end of replication-dependent histone mRNA is required for efficient pre-mRNA processing, localization of histone mRNA to the polyribosomes, and regulation of histone mRNA degradation. A protein, the stem-loop binding protein (SLBP), binds the 3' end of histone mRNA and is thought to mediate some or all of these processes. A mutant histone mRNA with two nucleotide changes in the loop was constructed and found to be transported inefficiently to the cytoplasm. The mutant histone mRNA, unlike the wild-type histone mRNA, was not rapidly degraded when DNA synthesis is inhibited, and was not stabilized upon inhibition of protein synthesis. The stem-loop binding protein (SLBP) has between a 20-50 fold greater affinity for the wild type histone stem-loop structure than for the mutant stem-loop structure, suggesting that the alteration in the efficiency of transport and the normal degradation pathway in histone mRNA may be due to the reduced affinity of the mutant stem-loop for the SLBP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call