Abstract
Stem respiration and growth in 10-year-old loblolly pine (Pinus taeda L.) plantations were measured monthly during the third year of fertilization and irrigation treatments to determine whether soil resource availability differentially altered growth and respiration in stem tissue. Fertilized trees had significantly greater stem biomass, stem nitrogen concentration ([N]) and growth rate than unfertilized trees. Stem respiration (Rt) was significantly greater in fertilized trees when expressed on a per unit surface area (Rt,a, micromol CO2 m-2 s-1), sapwood volume (Rt,v, micromol CO2 m-3 s-1), or mass (Rt,w, nmol CO2 g-1 s-1) basis; however, there was no difference between treatments when expressed as a function of stem N content (Rt,n, micromol CO2 (mol N)-1 s-1). Irrigation had no significant effect on Rt or annual stem growth. Daily total respiration (Rd, mol CO2 m-2 day-1) and stem diameter growth both had a seasonal bimodal pattern with peaks in early spring and midsummer. Stem [N] declined significantly during the growing season. Stem growth rate and [N] explained 75% of the seasonal variation in temperature-normalized Rt,a. The mature tissue method was used to partition total stem respiration (Rt) into maintenance (Rm) and growth (Rg) components. There was a linear correlation between winter Rt,v, a measure of basal Rm, and sapwood N content; however, Rt,v per unit N was greater in January before diameter growth started than in the following December after growth ceased, indicating that Rt,v declined as stem diameter increased. Consequently, estimates of annual maintenance respiration (RM) based on January data were 44% higher than estimates based on December data. Growth respiration was correlated with stem growth rate (r2 = 0.55). The growth respiration coefficient (rg)-the slope of the relationship between Rg and stem growth rate-was 0.24. Respiration accounted for 37% of annual stem carbon budget. Stem carbon-use efficiency (CUE)-the ratio of stem growth to stem growth plus respiration-averaged 0.63 and was unaffected by fertilization.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have