Abstract
A total of 200 stems of Caragana korshinskii and 210 stems of Salix psammophila were collected in the late August of 2015 in the Liudaogou catchment of Shenmu County, Shaanxi Pro-vince, China. Basal diameter (D), length (H), water content (W0), fresh mass (WF) and dry mass (W) were measured for each stem of the two species. Exponential and allometric equations were used to establish relationship models relating stem biomass to its morphological parameters. Altogether four models were established for each species, and their accuracy of estimation was also validated. The results showed that, the allometric model that used D2H as input variable was optimal in estimating stem biomass for C. korshinskii and S. psammophila, after transformed into its linear form. Meanwhile, the heteroscedasticity of the biomass data was greatly eliminated. This model had a maximum value of coefficient of determination (R2), and meanwhile minimum values of mean error (ME), mean absolute error (MAE), total relative error (TRE), mean systematic error (MSE), and mean absolute percentage error (MPSE), thus basically meeting the requirement of the accuracy in ecological study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Ying yong sheng tai xue bao = The journal of applied ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.