Abstract

In this paper we reanalayze the full-disk quiet-sun spectrum of Mallinovsky & Heroux (1973) with modern atomic data. The purposes of this are to check our atomic data and methods in other investigations using data from nearby stars obtained with the NASA Extreme Ultraviolet Explorer (EUVE) satellite, and to confirm that the solar first ionization potential (FIP) effect investigated by previous authors studying discrete solar regions is the same as that found in full-disk spectra. We recover the usual solar FIP effect of a coronal abundance enhancement of elements with a low FIP of a factor approximately 3-4 for lines formed at temperatures greater than approximately 10(exp 6) K. For lower temperatures, the FIP effect seems to be substantially smaller, in qualitative agreement with other data. Comparing our full-disk result with those from discrete solar structures suggest that the FIP effect is a function of altitude, with the lower temperature full-disk emission being dominated by the super-granulation network. We also compare the recent ionization balance of Arnaud & Raymond (1992) with that of Arnaud & Rothenflug (1985).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.