Abstract
We propose and analyze a Stein variational reduced basis method (SVRB) to solve large-scale PDE-constrained Bayesian inverse problems. To address the computational challenge of drawing numerous samples requiring expensive PDE solves from the posterior distribution, we integrate an adaptive and goal-oriented model reduction technique with an optimization-based Stein variational gradient descent method. We present detailed analyses for the reduced basis approximation errors of the potential and its gradient, the induced errors of the posterior distribution measured by Kullback--Leibler divergence, as well as the induced errors of the Stein variational samples. To demonstrate the computational accuracy and efficiency of SVRB, we report results of numerical experiments on a Bayesian inverse problem governed by a diffusion PDE with random parameters with both uniform and Gaussian prior distributions. Over 100X speedups can be achieved while the accuracy of the approximation of the potential and its gradient is preserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.