Abstract
The Runge–Kutta method is one of the most popular implicit methods for the solution of stiff ordinary differential equations. For large problems, the main drawback of such methods is the cost required at each integration step for computing the solution of a nonlinear system of equations. In this paper, we propose to reduce the cost of the computation by transforming the linear systems arising in the application of Newton's method to Stein matrix equations. We propose an iterative projection method onto block Krylov subspaces for solving numerically such Stein matrix equations. Numerical examples are given to illustrate the performance of our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.