Abstract
In this paper, a class of one-step hybrid methods for the numerical solution of ordinary differential equations (ODEs) are considered. The accuracy and stability properties of these methods are investigated. By judicious choice of the coefficients in these formulae a class of method is derived which is shown to be L-stable and so is appropriate for the solution of certain ordinary differential and stiff differential equations. We apply the new method for numerical integration of some famous stiff chemical problems such chemical Akzo-Nobel problem, ROBER problem (suggested by Robertson) and some others which are very popular in numerical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computer Science and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.