Abstract

Humanoid robots require to use microphone arrays to acquire speech signals from the human communication partner while suppressing noise, reverberation, and interferences. Unlike many other applications, microphone arrays in humanoid robots have to face the restrictions in size and geometry. To address these challenges, this paper presents an approach to differential beamforming with arbitrary planar array geometries. The major contributions of this work are as follows: (1) a method is presented to design differential beamformers, which works for regular geometries such as linear, circular, and concentric circular ones, as well as irregular geometries, as long as the sensors’ positions are given or can be measured; (2) fundamental requirements for the design of different orders of linear differential microphone arrays (DMAs), partially steerable DMAs, fully steerable DMAs, and robust DMAs are discussed; (3) the validity and limitations of the Jacobi-Anger expansion approximation is analyzed, where we discuss how to achieve an optimal approximation by properly choosing the reference point; and (4) we show how to design an Nth-order DMA with 2N microphones using the Jacobi-Anger expansion.

Highlights

  • It has long been a dream of researchers and engineers to create humanoid robots, which can communicate naturally with humans through speech and language

  • Among different types of available arrays, differential microphone arrays (DMAs), which are designed to measure the differentials of the sound pressure field, are more appropriate for robot audition since they are small in size and can achieve high directivity and frequencyinvariant beampatterns [14,15,16,17,18,19,20,21,22,23]

  • In a recent work [7], we studied the problem of differential beamforming with microphone arrays of arbitrary planar geometry, but many important issues such as beampattern steering, influence of array geometry on beamforming performance, and requirements for designing different beampatterns were not addressed

Read more

Summary

Introduction

It has long been a dream of researchers and engineers to create humanoid robots, which can communicate naturally with humans through speech and language. A prerequisite for this is the ability to acquire speech from the human communication partner with high fidelity/quality and, mitigate or even eliminate the effects of background noise, acoustic feedback, interferences, reverberation, and robot ego noise. This requires to use sensor arrays with multiple microphones arranged into a certain geometry. Among different types of available arrays, differential microphone arrays (DMAs), which are designed to measure the differentials of the sound pressure field, are more appropriate for robot audition since they are small in size and can achieve high directivity and frequencyinvariant beampatterns [14,15,16,17,18,19,20,21,22,23]. From the early efforts of designing linear DMAs in a multistage manner [24, 25], to the recently developed null-constraint-based linear DMAs in the short-time Fourier transform (STFT) domain [26], the flexibility in forming different beampatterns and the robustness of differential beamformers have been significantly improved [27,28,29,30,31]

Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.