Abstract

Differential microphone arrays (DMAs) are very attractive because of their high directional gains and frequency-invariant beampatterns. However, it is generally required that the array aperture is small, such that the DMA can respond to acoustic pressure differentials. In this paper, we propose a method to design differential beamformers with larger arrays consisting of multiple DMAs. In our study, conventional DMAs are considered as elementary units. The beamforming process consists of elementary differential beamformers and an additional beamformer that combines the multiple DMAs’ outputs. The steering vector of the global array is written as a Kronecker product of the steering vectors of an elementary DMA unit and the virtual array constructed from all the DMA units. This enables to design the global beamformer as a Kronecker product of the differential beamformer and the beamformer that corresponds to the virtual array. With the proposed method, one can take advantage of the good properties of DMAs for the design of beamformers with any size of microphone array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.