Abstract
The effect of negative capacitance (NC), which can internally boost the voltage applied to a transistor, has been considered to overcome the fundamental Boltzmann limit of a transistor. To stabilize the NC effect, the dielectric (DE) must be integrated into a heterostructure with a ferroelectric (FE) film. However, in a multidomain hafnia, the charge boosting effect is reduced owing to a lowering of the depolarization field originating from the stray field at each domain, and simultaneously, the operating voltage increases owing to the voltage division at the DE. Here, we demonstrate core approaches to the gate stack of energy-efficient device technology using a transient NC. Electrical measurements of the transistor with imprinted antiferroelectric and high CDE/CFE structures exhibit low subthreshold slopes below 20 mV/dec, a low voltage operation of 0.5 V, a fast operation of 20 ns, hysteresis-free Id-Vg, and high endurance characteristics of 1012 cycles. We expect that this will lead to the rapid implementation of the NC effect in high-speed switching device applications with significantly improved energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.