Abstract

Acid mine drainage is an extraordinarily acidic and highly heavy metal ion-contaminated leachate, seriously threatening the environment. In this work, an industrial solid waste of steel slag is the adsorbent to remediate the simulated acid mine drainage containing a large amount of Fe(II) ions. Due to the excellent physicochemical properties and structures, steel slag exhibited remarkable Fe(II) removal performance. Its maximum removal efficiency was up to 100%. The initial pH, the dosage and particle size of steel slag, and initial concentration of heavy metal ions on Fe(II) removal efficiency were determined. The pseudo-second-order model and Freundlich isotherm model well described the adsorption behavior of steel slag, implying that the adsorption of Fe(II) by steel slag was mainly multilayer chemisorption. The thermodynamic study demonstrated that the adsorption process was endothermic and spontaneous; the enthalpy change was calculated to equal 91.21kJ/mol. Mechanism study showed that the entire removal process of Fe(II) by steel slag was completed by electrostatic adsorption, chemical precipitation, and surface complexation in cooperation, and the chemical precipitation was the dominant mechanism. Meaningfully, this study provides a valuable strategy and path for engineering applications of AMD remediation by steel slag, which is prospective as an ideal candidate for Fe(II) ions elimination, inspiring the future development of "Treating the wastes with wastes."

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call