Abstract
In the present experimental work, 28 reinforced concrete beams were manufactured and tested in bending under 2 concentrated loads. The beams, which were made in high strength concrete and in ordinary concrete for comparison purposes, had different quantities of fibres, with two aspect ratios. During the testing, a special attention was given to the monitoring of flexural cracking in terms of width, spacing and length, using a digital camera and Gom-Aramis software for the analysis of the recorded images. The measured crack widths were compared with theoretical values predicted by three major universal design codes for reinforced concrete, namely the American ACI 318, the British Standard 8110, the Eurocode 2, and by the technical document of Rilem TC 162-TDF. In the present experimental work, an amendment of the Rilem model, taking into consideration the three important parameters, namely the quantity of fibres, their orientation factor and their aspect ratio, is proposed. The predicted values of the crack width obtained by the modified Rilem model were compared with the test values and assessed against other experimental data on fibre-reinforced concrete beams taken from the literature. The results show that the modified Rilem model is fairly reliable in predicting the crack width of fibre-reinforced concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Environmental and Civil Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.