Abstract

SUMMARYThe design of a three‐story buckling‐restrained braced frame (BRBF) with a single‐diagonal sandwiched BRB and corner gusset was evaluated in cyclic tests of a one‐story, one‐bay BRBF subassembly and dynamic analyses of the frame subjected to earthquakes. The test focused on evaluating (1) the seismic performance of a sandwiched BRB installed in a frame, (2) the effects of free‐edge stiffeners and dual gusset configurations on the corner gusset behavior, (3) the frame and brace action forces in the corner gusset, and (4) the failure mode of the BRBF under the maximum considerable earthquake level. The subassembly frame performed well up to a drift of 2.5% with a maximum axial strain of 1.7% in the BRB. Without free‐edge stiffeners, the single corner gusset plate buckled at a significantly lower strength than that predicted by the specificationof American Institute of Steel Construction (2005). The buckling could be eliminated by using dual corner gusset plates similar in size to the single gusset plate. At low drifts, the frame action force on the corner gusset was of the same magnitude as the brace force. At high drifts, however, the frame action force significantly increased and caused weld fractures at column‐to‐gusset edges. Nonlinear time history analyses were performed on the three‐story BRBF to obtain seismic demands under both design and maximum considerable levels of earthquake loading. The analytical results confirmed that the BRB and corner gusset plate achieved peak drift under cyclic loading test. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.