Abstract
As regulations on pesticides become more stringent, it is likely that there will be interest in steam as an alternative approach for soil disinfestation. This study investigates the feasibility of utilizing a soil steaming device for thermal control of invasive plants. Seeds of Echinochloa crus-galli, Impatiens glandulifera, Solidago canadensis, and rhizome fragments of Reynoutria × bohemica were examined for thermal sensitivity through two exposure methods: (1) steam treatment of propagative material in soil; (2) exposure of propagative material to warm soil just after heated by steam. Soil temperatures in the range of 60-99 °C and dwelling period of 3 min were tested. Increased soil temperature decreased seed germination/rhizome sprouting. The exposure method had a significant effect where higher temperatures were needed to reduce the seed germination/rhizome sprouting in method 2 explained by the effect of extra heat given in method 1. Using method 1, for E. crus-galli and S. canadensis, the maximum mean temperature of approximately 80 °C was enough to achieve the effective weed control level (90%). This was lower for I. glandulifera and higher for R. × bohemica. Using method 2, 90% control was achieved at 95 °C for S. canadensis; more than 115 °C for I. glandulifera; and more than 130 °C for E. crus-galli and R. × bohemica. Our findings showed a promising mortality rate for weeds propagative materials through soil steaming. However, the species showed varying responses to heat and therefore steam regulation should be based on the differences in weeds' susceptibility to heat. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have