Abstract
Graphitic carbon nitride (g-C3N4) has been extensively investigated as an efficient photocatalyst for water splitting. However, the intrinsic drawbacks of low surface area and poor charge separation efficiency seriously limit its practical applications in photocatalytic hydrogen evolution. Here, we designed an efficient nanorod-C3N4 photocatalyst by a versatile and scalable steam engraved protocol, which can produce higher surface area, enhanced crystallinity, reduced lattice defects, as well as meliorative energy band configuration. The engraved C3N4 exhibited a remarkably longer lifetime of charge carriers and a much higher photocatalytic hydrogen production rate than the pristine C3N4. The specific activity of the engraved C3N4 (87 μmol g−1h−1cm−2BET) is 10.4 times higher than that of pristine C3N4.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.