Abstract

Abstract Heat transfer coefficient (HTC) relations developed using steady-state experimental data are used for capturing the complete heat transport characteristic in a severe nuclear accident. It is important to verify the applicability of these correlation(s) at an early stage of the accident where heat transfer is transient in nature. In this paper, an experimental study is executed for this purpose. High-pressure steam (at 0.26 MPa (2.6 bar) and 0.41 MPa (4.1 bar) absolute pressure) is leaked into the closed containment initially filled with atmospheric air, and filmwise condensation is studied on an isothermally maintained vertical stainless steel test plate. During the experiment, temperature variation across the test plate at specified locations and inside the containment are recorded using the microthermocouples. The steam–air mixture composition is also examined using an online mass-spectrometry system. An inverse heat conduction (IHC) technique, validated using air-jet impingement heat transfer data, is used to estimate the time-varying condensation heat flux. It is found that the existing correlations based on the steady-state experimental data predict the transient condensation flux quite well, except in very early transient situation with a time scale of ∼20 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call