Abstract
Analytical expressions for the steady-state solutions of modified Stokes’ second problem of a class of incompressible Maxwell fluids with power-law dependence of viscosity on the pressure are determined when the gravity effects are considered. Fluid motion is generated by a flat plate that oscillates in its plane. We discuss similar solutions for the simple Couette flow of the same fluids. Obtained results can be used by the experimentalists who want to know the required time to reach the steady or permanent state. Furthermore, we discuss the accuracy of results by graphical comparisons between the solutions corresponding to the motion due to cosine oscillations of the plate and simple Couette flow. Similar solutions for incompressible Newtonian fluids with power-law dependence of viscosity on the pressure performing the same motions and some known solutions from the literature are obtained as limiting cases of the present results. The influence of pertinent parameters on fluid motion is graphically underlined and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.