Abstract
Analysis and design of steady states representing cell types, such as cell death or unregulated growth, are of significant interest in modeling genetic regulatory networks. In this article, the steady-state design of large-dimensional Boolean networks (BNs) is studied via model reduction and pinning control. Compared with existing literature, the pinning control design in this article is based on the original node's connection, but not on the state-transition matrix of BNs. Hence, the computational complexity is dramatically reduced in this article from O(2n×2n) to O(2×2r) , where n is the number of nodes in the large-dimensional BN and is the largest number of in-neighbors of the reduced BN. Finally, the proposed method is well demonstrated by a T-LGL survival signaling network with 18 nodes and a model of survival signaling in large granular lymphocyte leukemia with 29 nodes. Just as shown in the simulations, the model reduction method reduces 99.98% redundant states for the network with 18 nodes, and 99.99% redundant states for the network with 29 nodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.