Abstract

Nonlinear simple invariant solutions representing the ultimate scaling have been discovered to the Navier-Stokes equations for thermal convection between horizontal no-slip permeable walls with a distance [Formula: see text] and a constant temperature difference [Formula: see text]. On the permeable walls, the vertical transpiration velocity is assumed to be proportional to the local pressure fluctuations, i.e. [Formula: see text] (Jiménez et al. 2001 J. Fluid Mech., 442, 89-117. (doi:10.1017/S0022112001004888)). Two-dimensional steady solutions bifurcating from a conduction state have been obtained using a Newton-Krylov iteration up to the Rayleigh number [Formula: see text] for the Prandtl number [Formula: see text], the horizontal period [Formula: see text] and the permeability parameter [Formula: see text]-[Formula: see text], [Formula: see text] being the buoyancy-induced terminal velocity. The wall permeability has a significant impact on the onset and the scaling properties of the found steady 'wall-bounded' thermal convection. The ultimate scaling [Formula: see text] has been observed for [Formula: see text] at high [Formula: see text], where [Formula: see text] is the Nusselt number. In the steady ultimate state, large-scale thermal plumes fully extend from one wall to the other, inducing the strong vertical velocity comparable with the terminal velocity [Formula: see text] as well as intense temperature variation of [Formula: see text] even in the bulk region. As a consequence, the wall-to-wall heat flux scales with [Formula: see text] independent of thermal diffusivity, although the heat transfer on the walls is dominated by thermal conduction. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 1)'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call