Abstract
The largest magnitude earthquake in a sequence is often used as a proxy for hazard estimates, as consequences are often predominately from this single event (in small seismic zones). In this article, the concept of order statistics is adapted to infer the maximum magnitude ([Formula: see text]) of an earthquake catalogue. A suite tools developed here can discern [Formula: see text] influences through hypothesis testing, quantify [Formula: see text] through maximum likelihood estimation (MLE) or select the best [Formula: see text] prediction amongst several models. The efficacy of these tools is benchmarked against synthetic and real-data tests, demonstrating their utility. Ultimately, 13 cases of induced seismicity spanning wastewater disposal, hydraulic fracturing and enhanced geothermal systems are tested for volume-based [Formula: see text]. I find that there is no evidence of volume-based processes influencing any of these cases. On the contrary, all these cases are adequately explained by an unbounded magnitude distribution. This is significant because it suggests that induced earthquake hazards should also be treated as unbounded. On the other hand, if bounded cases exist, then the tools developed here will be able to discern them, potentially changing how an operator mitigates these hazards. Overall, this suite of tools will be important for better-understanding earthquakes and managing their risks. This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.