Abstract

Floquet engineering offers tantalizing opportunities for controlling the dynamics of quantum many body systems and realizing new nonequilibrium phases of matter. However, this approach faces a major challenge: generic interacting Floquet systems absorb energy from the drive, leading to uncontrolled heating which washes away the sought after behavior. How to achieve and control a non-trivial nonequilibrium steady state is therefore of crucial importance. In this work, we study the dynamics of an interacting one-dimensional periodically-driven electronic system coupled to a phonon heat bath. Using the Floquet-Boltzmann equation (FBE) we show that the electronic populations of the Floquet eigenstates can be controlled by the dissipation. We find the regime in which the steady state features an insulatorlike filling of the Floquet bands, with a low density of additional excitations. Furthermore, we develop a simple rate equation model for the steady state excitation density that captures the behavior obtained from the numerical solution of the FBE over a wide range of parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.