Abstract

A previous four-compartment steady-state model of the root is extended to include the following: gradients of pressure (P) and osmotic pressure (Π) in the rooting medium, cortical apoplast and xylem; unloading of solutes to the xylem from internal stores; and apoplastic water flow across the endodermis. The model is tested by determining the steady-state relationship between applied pressure (Po) and volume flow rate (Qv) for excised roots of 4-day-old soybean seedlings under various conditions (vermiculite- versus water-cultured plants, different salt concentrations, permeant versus impermeant solutes). It is concluded that apoplastic volume flow across the endodermis is negligible. It is also argued that external or apoplastic gradients of P and Π tend to reduce the magnitude of the anomalous offset often observed in Po-Qv curves. The trans-root difference in water potential (ΔΨ) is shown to be a linear function of Qv at low Qv , but both ΔΨ(Qv) and Po(Qv) become nonlinear at high Qv . This unusual behavior may result from a nonlinear dependence of apoplastic pressure gradients and / or symplastic solute-concentration gradients on Qv . Alternatively, it might reflect saturation of water transport in plasmodesmata or aquaporins. The ΔΨ associated with growth-induced water uptake is shown to be negligible compared with the growth-induced water potentials measured in the stem elongation zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.