Abstract

We study the steady-state thermodynamics of a cascaded collision model where two subsystems and collide successively with an environment R in the cascaded fashion. We first formulate general expressions of thermodynamics quantities and identify the nonlocal forms of work and heat that result from cascaded interactions of the system with the common environment. Focusing on a concrete system of two qubits, we then show that, to be able to unidirectionally influence the thermodynamics of , the former interaction of should not be energy conserving. We finally demonstrate that the steady-state coherence generated in the cascaded model is a kind of useful resource in extracting work, quantified by ergotropy, from the system. Our results provide a comprehensive understanding on the thermodynamics of the cascaded model and a possible way to achieve the unidirectional control on the thermodynamics process in the steady-state regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.