Abstract

For stochastic lattice models in spatially uniform nonequilibrium steady states, an effective thermodynamic temperature T and chemical potential μ can be defined via coexistence with heat and particle reservoirs. We verify that the probability distribution P_{N} for the number of particles in the driven lattice gas with nearest-neighbor exclusion in contact with a particle reservoir with dimensionless chemical potential µ^{*} possesses a large-deviation form in the thermodynamic limit. This implies that the thermodynamic properties determined in isolation (fixed particle number representation) and in contact with a particle reservoir (fixed dimensionless chemical potential representation) are equal. We refer to this as description equivalence. This finding motivates investigation of whether the effective intensive parameters so obtained depend on the nature of the exchange between system and reservoir. For example, a stochastic particle reservoir is usually taken to insert or remove a single particle in each exchange, but one may also consider a reservoir that inserts or removes a pair of particles in each event. In equilibrium, equivalence of pair and single-particle reservoirs is guaranteed by the canonical form of the probability distribution on configuration space. Remarkably, this equivalence is violated in nonequilibrium steady states, limiting the generality of steady-state thermodynamics based on intensive variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call