Abstract
We explore thermodynamic relations in nonequilibrium steady states with numerical experiments on a driven lattice gas. After operationally defining the pressure and chemical potential in the driven lattice gas, we confirm numerically the validity of the integrability condition (the Maxwell relation) for the two quantities whose values differ from those for an equilibrium system. This implies that a free-energy function can be constructed for the nonequilibrium steady state that we consider. We also investigate a fluctuation relation associated with this free-energy function. Our result suggests that the compressibility can be expressed in terms of density fluctuations even in nonequilibrium steady states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.