Abstract

We report results from a simulation that assesses steady state hydrodynamics of two-phase lattice gas fluids by considering isolated fluid drops that are suspended in an immiscible fluid of identical viscosity. Gunstensen's method of incorporating phase segregation between different species of colored densities [(A.K. Gunstensen et al., Phys. Rev. A 43, 4320 (1991)] is combined with Kingdon's recent nonlinear, nonlocal lattice Boltzmann equation [R. Kingdon, J. Phys. A 25, 3559 (1992)], which facilitates meaningful observations of lattice gas interfacial hydrodynamics. After the approach to a steady flow state has been assessed, the deformation of a suspended fluid drop, its angle of orientation to the shear flow, and the relationship between these quantities are extracted from simulations over a range of shear rates and interfacial tensions. Qualitative and quantitative comparison of these results with hydrodynamic theory shows further work to be necessary but worthwhile. Gunstensen's automaton phase segregation rule is also found to be responsible for inducing steady microscopic currents or microcurrents close to the inferface in a static flow. The influences of these microcurrents are briefly considered after Gunstensen [Ph.D. thesis, Massachusetts Institute of Technology, 1992 (unpublished)]. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.