Abstract

Presented is a feed-forward controller that reduces air-fuel (A/F) ratio excursions during a canister purge event. The controller is linear parameter-varying (LPV) model and estimates the necessary changes in the fuel pulse-width (FPW) based on a hydrocarbon (HC) sensor located in the purge line. Coordination between the purge fuel vapor arrival to the intake manifold and the fueling command is realized using a transport delay model. The proposed controller is experimentally validated. A significant reduction in A/F excursions is achieved during the steady state engine operating conditions associated with highway conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.