Abstract
A generalized solution is presented in order to predict the steady-state performance characteristics of aerostatic porous rectangular thrust bearings of finite pad thickness. The analysis takes into account the Beavers-Joseph criterion for velocity slip at the bearing interface, the anisotropy of the porous material and the tilt of the bearing. Dimensionless load capacity, mass flowrate of the gas and static stiffness are computed numerically for different operating parameters and bearing dimensions and presented in the form of design charts. The effect of slip is to reduce the load capacity and increase the mass rate of flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.