Abstract
A theoretical analysis is presented to predict the static axial performance characteristics of a porous circular thrust bearing with a central hole for both open and sealed ends, taking into consideration the tilt of the runner pad. The flow in the bearing matrix is considered to be three-dimensional. The governing equations of gas flow through the porous pad and the bearing clearance are solved simultaneously using the finite difference technique to obtain pressure distribution in the bearing clearance. The load capacity, mass rate of flow and static axial stiffness are calculated numerically for various bearing dimensions and supply conditions and presented in graphical form. The bearings with sealed ends have comparatively better load capacity over those with unsealed ends. The effect of tilt is to decrease the load capacity and increase the mass flowrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.