Abstract

In the present work we report some hitherto unnoticed features in the steady state and time-resolved measurements of isoquinoline in water and trifluoroethanol (TFE). Absorption spectra reveal that in water, neutrals as well cationic species are present. Emission spectrum shows structured features at shorter wavelengths accompanied with a broad band around 375 nm, which correspond to neutrals and cations respectively. However, time-resolved data indicate that protonation does not take place in the excited state in water. On the contrary, in stronger hydrogen bonding solvent TFE, distribution of decay components is observed and at longer wavelengths a small rise time is present. This is ascribed to neutral and cation-like species present in the ground as well as in the excited state. The difference in the results is explained in terms of different excited state potential energy surfaces for water and TFE; particularly, the presence of a rather small barrier for protonation in case of TFE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.