Abstract

In this article, we use two extensively studied systems, a retinal model system and azobenzene, to explore the use of coupled cluster models for describing ground and singlet excited state potential energy surfaces of photoswitchable systems. While not being suitable for describing nuclear dynamics of photoisomerization, coupled cluster models have useful attributes, such as the inclusion of dynamical correlation, their black box nature, and the systematic improvement offered by truncation level. Results for the studied systems show that when triple excitations (here through the CC3 model) are included, ground and excited state potential energy surfaces for isomerization paths may reliably be generated, also for states of doubly excited character. For ground state equilibrium cis- and trans-azobenzene, the molecular geometry and basis set is seen to significantly impact the vertical excitation energies for the two lowest excited states. Efficient implementations of coupled cluster models can therefore constitute valuable tools for investigating photoswitchable systems and can be used for preliminary black box studies to gather information before more complicated excited state dynamics approaches are pursued.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.