Abstract

Change detection (CD) is in demand in satellite imagery processing. Inspired by the recent success of the combined transformer-CNN (convolutional neural network) model, TransCNN, originally designed for image recognition, in this paper, we present STDecoder-CD for change detection applications, which is a combination of the Siamese network (“S”), the TransCNN backbone (“T”), and three types of decoders (“Decoder”). The Type I model uses a UNet-like decoder, and the Type II decoder is defined by a combination of three modules: the difference detector, FPN (feature pyramid network), and FCN (fully convolutional network). The Type III model updates the change feature map by introducing a transformer decoder. The effectiveness and advantages of the proposed methods over the state-of-the-art alternatives were demonstrated on several CD datasets, and experimental results indicate that: (1) STDecoder-CD has excellent generalization ability and has strong robustness to pseudo-changes and noise. (2) An end-to-end CD network architecture cannot be completely free from the influence of the decoding strategy. In our case, the Type I decoder often obtained finer details than Types II and III due to its multi-scale design. (3) Using the ablation or replacing strategy to modify the three proposed decoder architectures had a limited impact on the CD performance of STDecoder-CD. To the best of our knowledge, we are the first to investigate the effect of different decoding strategies on CD tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.