Abstract
A non-degenerate second-order maximally conformally superintegrable system in dimension 2 naturally gives rise to a quadric with position dependent coefficients. It is shown how the system's Stäckel class can be obtained from this associated quadric.The Stäckel class of a second-order maximally conformally superintegrable system is its equivalence class under Stäckel transformations, i.e., under coupling-constant metamorphosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.