Abstract

This paper is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. Here we study the Stäckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different spaces. Through the use of this tool we derive and classify for the first time all two-dimensional (2D) superintegrable systems. The underlying spaces are exactly those derived by Koenigs in his remarkable paper giving all 2D manifolds (with zero potential) that admit at least three second order symmetries. Our derivation is very simple and quite distinct. We also show that every superintegrable system is the Stäckel transform of a superintegrable system on a constant curvature space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call