Abstract

The Reactor Experiment for Neutrino Oscillation (RENO) is a reactor based neutrino oscillation experiment to measure the neutrino mixing angle θ13 using anti-neutrinos emitted from the Yonggwang nuclear power plant in Korea. Its thermal power output is 16.4 Gwth. The experimental setup consists of two identical 16-ton gadolinium-loaded liquid scintillator detectors. The near and far detectors are placed roughly 290 m and 1.4 km from the center of the reactor array, respectively. The near detector is constructed at underground of a 70 m high hill and the far detector at underground of a 260 m high mountain. The construction of experimental halls and access tunnels for both near and far detector sites was completed in early 2009. The experiment is planned to start data-taking from early 2011. An expected number of observed anti-neutrinos is roughly 1300 per day and 100 per day in the far and near detector, respectively. We expect that an estimated systematic uncertainty is less than 0.5%. With three years of data taken, RENO is sensitive to measure sin2(2θ13)>0.02. Sensitivity is ten times better than the current limit obtained by Chooz. In this review, current status of RENO is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call